Draft Highest Attainable Condition Procedure

Water Quality Standards and Assessment

Presentation to Willamette Basin Mercury MDV Advisory Committee April 4, 2019

DEQ Headquarters, Portland, OR

Topics

- Review of HAC concept
- New, improved flow chart!
- Rationale

- Simplified process that applies to industrial and municipal dischargers.
- Prioritizes MMP implementation
 - Source reduction can achieve similar Hg reductions at lower environmental harm

Highest Attainable Condition

2. Effluent condition with greatest pollutant reduction achievable

Oľ

3. Effluent condition that optimizes current technology + pollutant reduction program

Advanced systems

Yes

There is no feasible additional treatment that will remove additional mercury.

HAC #3 – Optimized system with LCA-based effluent limit plus mercury minimization plan

Rationale

- No proven treatment that can achieve additional mercury reductions
- DEQ will revisit technology every five years to determine if there are any feasible technological advances.

Systems undergoing upgrades

Rationale

- Upgrades can address multiple pollutants.
- Provide facility sufficient time to collect data to develop LCA under new treatment.

All Other Facilities

with LCA-based effluent limit plus mercury minimization plan.

Rationale

- MMP implementation will lead to similar Hg reductions as treatment.
- Treatment causes more environmental harm than MMP implementation.

Wisc. POTWs 2004-2018

of facilities with increasing or decreasing trend in annual average mercury effluent concentrations 2004-2008 vs. 2014-2018

Wisc. POTWs 2004-2018

Level currently achievable, 2004-2008

Level currently achievable, 2014-2018

Wisc. Industrials 2004-2018

of facilities with increasing or decreasing trend in annual average mercury effluent concentrations 2004-2008 vs. 2014-2018

Wisconsin Industrials 2004-2018

Annual average mercury effluent concentrations, 2004-2008

Annual average mercury effluent concentrations, 2014-2018

Environmental Harm of Treatment

- MMP: No incremental cost
- Upgrades:
 - >200 MWh/MGD/yr compared to secondary
 - Equiv. to 125 tons CO₂ equiv/yr/MGD.
 - Additional cost of transporting waste, plus risk to reintroduce waste to environment.
- Need to weigh harm of treatment vs. harm of leaving pollution in place for a few years.

Comments and discussion

DEQ can provide documents in an alternate format or in a language other than English upon request. Call DEQ at 800-452-4011 or email deqinfo@deq.state.or.us.

